
	

Continue

https://feedproxy.google.com/~r/1eyvgo/aqOO/~3/ngfLrbzwjls/uplcv?utm_term=postgres+create+user+table

Postgres	create	user	table

PostgreSQL	is	one	of	the	most	popular	open-source	relational	database	systems.	With	more	than	30	years	of	development	work,	PostgreSQL	has	proven	to	be	a	highly	reliable	and	robust	database	that	can	handle	a	large	number	of	complicated	data	workloads.	PostgreSQL	is	considered	to	be	the	primary	open-source	database	choice	when	migrating
from	commercial	databases	such	as	Oracle.	Amazon	Web	Services	(AWS)	provides	two	managed	PostgreSQL	options:	Amazon	Relational	Database	Service	(Amazon	RDS)	for	PostgreSQL	and	Amazon	Aurora	PostgreSQL.	In	this	post,	I	talk	about	some	of	the	best	practices	for	managing	users	and	roles	in	PostgreSQL.	With	PostgreSQL,	you	can	create
users	and	roles	with	granular	access	permissions.	The	new	user	or	role	must	be	selectively	granted	the	required	permissions	for	each	database	object.	This	gives	a	lot	of	power	to	the	end	user,	but	at	the	same	time,	it	makes	the	process	of	creating	users	and	roles	with	the	correct	permissions	potentially	complicated.	PostgreSQL	lets	you	grant
permissions	directly	to	the	database	users.	However,	as	a	good	practice,	it	is	recommended	that	you	create	multiple	roles	with	specific	sets	of	permissions	based	on	application	and	access	requirements.	Then	assign	the	appropriate	role	to	each	user.	The	roles	should	be	used	to	enforce	a	least	privilege	model	for	accessing	database	objects.	The	master
user	that	is	created	during	Amazon	RDS	and	Aurora	PostgreSQL	instance	creation	should	be	used	only	for	database	administration	tasks	like	creating	other	users,	roles,	and	databases.	The	master	user	should	never	be	used	by	the	application.	The	recommended	approach	for	setting	up	fine-grained	access	control	in	PostgreSQL	is	as	follows:	Use	the
master	user	to	create	roles	per	application	or	use	case,	like	readonly	and	readwrite.	Add	permissions	to	allow	these	roles	to	access	various	database	objects.	For	example,	the	readonly	role	can	only	run	SELECT	queries.	Grant	the	roles	the	least	possible	permissions	required	for	the	functionality.	Create	new	users	for	each	application	or	distinct
functionality,	like	app_user	and	reporting_user.	Assign	the	applicable	roles	to	these	users	to	quickly	grant	them	the	same	permissions	as	the	role.	For	example,	grant	the	readwrite	role	to	app_user	and	grant	the	readonly	role	to	reporting_user.	At	any	time,	you	can	remove	the	role	from	the	user	in	order	to	revoke	the	permissions.	The	following
diagram	summarizes	these	recommendations:	The	following	sections	discuss	these	steps	in	detail.	You	can	connect	to	the	RDS	endpoint	for	your	PostgreSQL	database	using	a	client	such	as	psql	and	run	the	SQL	statements.	Users,	groups,	and	roles	Users,	groups,	and	roles	are	the	same	thing	in	PostgreSQL,	with	the	only	difference	being	that	users
have	permission	to	log	in	by	default.	The	CREATE	USER	and	CREATE	GROUP	statements	are	actually	aliases	for	the	CREATE	ROLE	statement.	In	other	relational	database	management	systems	(RDBMS)	like	Oracle,	users	and	roles	are	two	different	entities.	In	Oracle,	a	role	cannot	be	used	to	log	in	to	the	database.	The	roles	are	used	only	to	group
grants	and	other	roles.	This	role	can	then	be	assigned	to	one	or	more	users	to	grant	them	all	the	permissions.	For	more	details	with	a	focus	on	how	to	migrate	users,	roles,	and	grants	from	Oracle	to	PostgreSQL,	see	the	AWS	blog	post	Use	SQL	to	map	users,	roles,	and	grants	from	Oracle	to	PostgreSQL.	To	create	a	PostgreSQL	user,	use	the	following
SQL	statement:	CREATE	USER	myuser	WITH	PASSWORD	'secret_passwd';	You	can	also	create	a	user	with	the	following	SQL	statement:	CREATE	ROLE	myuser	WITH	LOGIN	PASSWORD	'secret_passwd';	Both	of	these	statements	create	the	exact	same	user.	This	new	user	does	not	have	any	permissions	other	than	the	default	permissions	available	to
the	public	role.	All	new	users	and	roles	inherit	permissions	from	the	public	role.	The	following	section	provides	more	details	about	the	public	role.	Public	schema	and	public	role	When	a	new	database	is	created,	PostgreSQL	by	default	creates	a	schema	named	public	and	grants	access	on	this	schema	to	a	backend	role	named	public.	All	new	users	and
roles	are	by	default	granted	this	public	role,	and	therefore	can	create	objects	in	the	public	schema.	PostgreSQL	uses	a	concept	of	a	search	path.	The	search	path	is	a	list	of	schema	names	that	PostgreSQL	checks	when	you	don’t	use	a	qualified	name	of	the	database	object.	For	example,	when	you	select	from	a	table	named	“mytable”,	PostgreSQL	looks
for	this	table	in	the	schemas	listed	in	the	search	path.	It	chooses	the	first	match	it	finds.	By	default,	the	search	path	contains	the	following	schemas:	postgres=#	show	search_path;	search_path	-----------------	"$user",	public	(1	row)	The	first	name	“$user”	resolves	to	the	name	of	the	currently	logged	in	user.	By	default,	no	schema	with	the	same	name	as
the	user	name	exists.	So	the	public	schema	becomes	the	default	schema	whenever	an	unqualified	object	name	is	used.	Because	of	this,	when	a	user	tries	to	create	a	new	table	without	specifying	the	schema	name,	the	table	gets	created	in	the	public	schema.	As	mentioned	earlier,	by	default,	all	users	have	access	to	create	objects	in	the	public	schema,
and	therefore	the	table	is	created	successfully.	This	becomes	a	problem	if	you	are	trying	to	create	a	read-only	user.	Even	if	you	restrict	all	privileges,	the	permissions	inherited	via	the	public	role	allow	the	user	to	create	objects	in	the	public	schema.	To	fix	this,	you	should	revoke	the	default	create	permission	on	the	public	schema	from	the	public	role
using	the	following	SQL	statement:	REVOKE	CREATE	ON	SCHEMA	public	FROM	PUBLIC;	Make	sure	that	you	are	the	owner	of	the	public	schema	or	are	part	of	a	role	that	allows	you	to	run	this	SQL	statement.	The	following	statement	revokes	the	public	role’s	ability	to	connect	to	the	database:	REVOKE	ALL	ON	DATABASE	mydatabase	FROM
PUBLIC;	This	makes	sure	that	users	can’t	connect	to	the	database	by	default	unless	this	permission	is	explicitly	granted.	Revoking	permissions	from	the	public	role	impacts	all	existing	users	and	roles.	Any	users	and	roles	that	should	be	able	to	connect	to	the	database	or	create	objects	in	the	public	schema	should	be	granted	the	permissions	explicitly
before	revoking	any	permissions	from	the	public	role	in	the	production	environment.	Creating	database	roles	The	following	sections	document	the	process	of	creating	new	roles	and	granting	them	permissions	to	access	various	database	objects.	Permissions	must	be	granted	at	the	database,	schema,	and	schema	object	level.	For	example,	if	you	need	to
grant	access	to	a	table,	you	must	also	make	sure	that	the	role	has	access	to	the	database	and	schema	in	which	the	table	exists.	If	any	of	the	permissions	are	missing,	the	role	cannot	access	the	table.	Read-only	role	The	first	step	is	to	create	a	new	role	named	readonly	using	the	following	SQL	statement:	This	is	a	base	role	with	no	permissions	and	no
password.	It	cannot	be	used	to	log	in	to	the	database.	Grant	this	role	permission	to	connect	to	your	target	database	named	“mydatabase”:	GRANT	CONNECT	ON	DATABASE	mydatabase	TO	readonly;	The	next	step	is	to	grant	this	role	usage	access	to	your	schema.	Let’s	assume	the	schema	is	named	myschema:	GRANT	USAGE	ON	SCHEMA	myschema
TO	readonly;	This	step	grants	the	readonly	role	permission	to	perform	some	activity	inside	the	schema.	Without	this	step,	the	readonly	role	cannot	perform	any	action	on	the	objects	in	this	schema,	even	if	the	permissions	were	granted	for	those	objects.	The	next	step	is	to	grant	the	readonly	role	access	to	run	select	on	the	required	tables.	GRANT
SELECT	ON	TABLE	mytable1,	mytable2	TO	readonly;	If	the	requirement	is	to	grant	access	on	all	the	tables	and	views	in	the	schema,	then	you	can	use	the	following	SQL:	GRANT	SELECT	ON	ALL	TABLES	IN	SCHEMA	myschema	TO	readonly;	The	preceding	SQL	statement	grants	SELECT	access	to	the	readonly	role	on	all	the	existing	tables	and	views
in	the	schema	myschema.	Note	that	any	new	tables	that	get	added	in	the	future	will	not	be	accessible	by	the	readonly	user.	To	help	ensure	that	new	tables	and	views	are	also	accessible,	run	the	following	statement	to	grant	permissions	automatically:	ALTER	DEFAULT	PRIVILEGES	IN	SCHEMA	myschema	GRANT	SELECT	ON	TABLES	TO	readonly;
Read/write	role	The	process	of	adding	a	read/write	role	is	very	similar	to	the	read-only	role	process	covered	previously.	The	first	step	is	creating	a	role:	Grant	this	role	permission	to	connect	to	your	target	database:	GRANT	CONNECT	ON	DATABASE	mydatabase	TO	readwrite;	Grant	schema	usage	privilege:	GRANT	USAGE	ON	SCHEMA	myschema	TO
readwrite;	If	you	want	to	allow	this	role	to	create	new	objects	like	tables	in	this	schema,	then	use	the	following	SQL	instead	of	the	one	preceding:	GRANT	USAGE,	CREATE	ON	SCHEMA	myschema	TO	readwrite;	The	next	step	is	to	grant	access	to	the	tables.	As	mentioned	in	the	previous	section,	the	grant	can	be	on	individual	tables	or	all	tables	in	the
schema.	For	individual	tables,	use	the	following	SQL:	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	TABLE	mytable1,	mytable2	TO	readwrite;	For	all	the	tables	and	views	in	the	schema,	use	the	following	SQL:	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	ALL	TABLES	IN	SCHEMA	myschema	TO	readwrite;	To	automatically	grant	permissions
on	tables	and	views	added	in	the	future:	ALTER	DEFAULT	PRIVILEGES	IN	SCHEMA	myschema	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	TABLES	TO	readwrite;	For	read/write	roles,	there	is	normally	a	requirement	to	use	sequences	also.	You	can	give	selective	access	as	follows:	GRANT	USAGE	ON	SEQUENCE	myseq1,	myseq2	TO	readwrite;
You	can	also	grant	permission	to	all	sequences	using	the	following	SQL	statement:	GRANT	USAGE	ON	ALL	SEQUENCES	IN	SCHEMA	myschema	TO	readwrite;	To	automatically	grant	permissions	to	sequences	added	in	the	future:	ALTER	DEFAULT	PRIVILEGES	IN	SCHEMA	myschema	GRANT	USAGE	ON	SEQUENCES	TO	readwrite;	You	can	grant
more	or	fewer	permissions	based	on	the	requirements.	The	PostgreSQL	GRANT	command	documentation	provides	more	details	about	the	objects	on	which	permissions	can	be	granted	and	the	required	SQL	statements.	Creating	database	users	With	the	roles	in	place,	the	process	of	creating	users	is	simplified.	Just	create	the	user	and	grant	it	one	of
the	existing	roles.	Here	are	the	SQL	statements	for	this	process:	CREATE	USER	myuser1	WITH	PASSWORD	'secret_passwd';	GRANT	readonly	TO	myuser1;	This	grants	myuser1	the	same	permissions	as	the	readonly	role.	Similarly,	you	can	grant	read	and	write	access	to	a	user	by	granting	the	readwrite	role.	The	PostgreSQL	CREATE	USER
documentation	contains	more	details	about	the	parameters	you	can	set	while	creating	a	user.	For	example,	you	can	specify	an	expiry	time	for	the	user	or	allow	the	user	to	create	databases.	Managing	user	passwords	After	creating	a	user,	you	must	provide	these	credentials	to	the	application	so	that	it	can	access	the	database.	It	is	essential	to	make
sure	that	these	credentials	are	not	hardcoded	in	the	source	code	or	placed	in	some	shared	configuration	files	as	clear	text.	AWS	provides	a	solution	for	this	with	AWS	Secrets	Manager.	Using	Secrets	Manager,	you	can	store	the	credentials	and	then	use	AWS	Identity	and	Access	Management	(IAM)	to	allow	only	certain	IAM	users	and	roles	to	read	the
credentials.	For	the	steps	involved	in	this,	see	Creating	and	Managing	Secrets	with	AWS	Secrets	Manager	in	the	AWS	Secrets	Manager	User	Guide.	In	addition	to	storing	the	credentials,	a	very	useful	feature	that	Secrets	Manager	provides	is	database	user	password	rotation.	You	can	use	this	feature	to	set	up	a	policy	to	automatically	change	the
password	at	a	certain	frequency.	For	details	about	how	to	set	this	up	so	that	there	is	no	downtime	for	the	applications,	see	Rotating	Your	AWS	Secrets	Manager	Secrets.	Amazon	RDS	and	Amazon	Aurora	PostgreSQL	provide	a	new	restricted	password	management	feature	that	is	supported	with	PostgreSQL	10.6	and	higher.	Using	a	new	parameter
and	a	special	role,	you	can	limit	database	user	password	changes	to	members	of	this	special	role.		By	doing	this,	you	enable	greater	control	over	password	management	on	the	client	side	(for	example,	expiry	requirements	and	complexity	requirements).	IAM	database	authentication	Amazon	RDS	and	Aurora	PostgreSQL	have	integrated	with	IAM	so
that	you	can	authenticate	to	your	DB	instance	using	IAM	database	authentication.	This	feature	is	available	for	Amazon	RDS	PostgreSQL	versions	9.5.14,	9.6.9	or	higher,	and	version	10.4	or	higher.	For	Aurora	PostgreSQL,	this	feature	is	available	for	versions	9.6.9	or	higher,	and	version	10.4	or	higher.	The	key	benefit	of	this	feature	is	that	you	can	use
IAM	to	centrally	manage	access	to	your	database	resources	instead	of	managing	access	individually	on	each	DB	instance.	Using	this	method,	the	administrator	can	easily	grant	or	revoke	database	access	via	an	IAM	policy.	After	the	IAM	grants	have	been	added,	the	user	can	request	a	temporary	password	using	the	AWS	CLI	and	then	connect	to	the	DB
using	this	temporary	password.	The	following	diagram	shows	this	workflow.	For	more	information	about	this	feature,	see	IAM	Database	Authentication	for	MySQL	and	PostgreSQL.	The	documentation	also	contains	detailed	steps	to	configure	IAM	DB	authentication.	This	method	deals	only	with	the	authentication	part.	Granting	permissions	on	various
database	objects	is	done	within	the	database	as	explained	in	this	post.	For	example,	to	grant	this	user	readwrite	access,	run	the	following	SQL	statement:	GRANT	readwrite	TO	db_user;	Revoking	or	changing	user	permissions	Using	the	method	documented	previously,	it	becomes	very	easy	to	revoke	privileges	from	a	user.	For	example,	you	can	remove
the	readwrite	permission	from	myuser1	using	the	following	SQL	statement:	REVOKE	readwrite	FROM	myuser1;	Similarly,	you	can	grant	a	new	role	as	follows:	GRANT	readonly	TO	myuser1;	Monitoring	usage	You	can	monitor	user	activity	by	setting	PostgreSQL	logging	parameters	available	in	the	RDS	parameter	groups.	For	example,	you	can	set	the
log_connections	and	log_disconnections	parameters	to	capture	all	new	connections	and	disconnections.	After	setting	these	parameters	in	the	parameter	group,	you	will	see	the	following	messages	in	the	log	files:	2018-11-09	21:08:39	UTC:XX-XX-XX-XX.amazon.com(27585):myuser@mydb:[18014]:LOG:	connection	authorized:	user=myuser
database=mydb	SSL	enabled	(protocol=TLSv1.2,	cipher=ECDHE-RSA-AES256-GCM-SHA384,	compression=off)	2018-11-09	21:09:19	UTC:XX-XX-XX-XX.amazon.com(27585):myuser@mydb:[18014]:LOG:	disconnection:	session	time:	0:00:39.649	user=myuser	database=mydb	host=XX-XX-XX-XX.amazon.com	port=27585	If	you	require	more	detailed
session	or	object-level	custom	auditing	information,	then	you	can	use	the	pgAudit	extension.	The	steps	to	configure	pgAudit	with	Amazon	RDS	and	Aurora	PostgreSQL	are	available	in	Working	with	the	pgaudit	Extension	in	the	Amazon	RDS	User	Guide.	Increasing	database	logging	does	impact	storage	size,	I/O	use,	and	CPU	use.	Because	of	this,	it	is
important	that	you	test	these	changes	before	deploying	them	in	production.	Checking	the	granted	roles	You	can	use	the	following	query	to	get	a	list	of	all	the	database	users	and	roles	along	with	a	list	of	roles	that	have	been	granted	to	them:	SELECT	r.rolname,	ARRAY(SELECT	b.rolname	FROM	pg_catalog.pg_auth_members	m	JOIN
pg_catalog.pg_roles	b	ON	(m.roleid	=	b.oid)	WHERE	m.member	=	r.oid)	as	memberof	FROM	pg_catalog.pg_roles	r	WHERE	r.rolname	NOT	IN	('pg_signal_backend','rds_iam',	'rds_replication','rds_superuser',	'rdsadmin','rdsrepladmin')	ORDER	BY	1;	Here	is	sample	output	from	a	test	RDS	instance:	rolname	|	memberof	----------------+-----------------	app_user
|	{readwrite}	postgres	|	{rds_superuser}	readonly	|	{}	readwrite	|	{}	reporting_user	|	{readonly}	Note	that	a	user	can	be	member	of	multiple	roles	with	distinct	or	overlapping	permissions.	In	this	case,	the	user	gets	a	sum	of	all	the	permissions.	You	can	also	use	the	catalog	table	pg_roles	to	check	attributes	like	password	expiry	date	or	number	of
parallel	connections	allowed.	Summary	In	this	post,	I	shared	some	best	practices	for	managing	users	and	roles	in	PostgreSQL.	This	post	provides	a	basic	framework	that	you	can	modify	based	on	your	application	requirements	and	the	principles	of	least	privilege.	To	summarize	the	concepts,	I	have	provided	the	following	reference	SQL	statements	for
implementing	the	users	and	roles	using	an	example	scenario:	A	PostgreSQL	database	has	been	created	with	primary	database	named	mydatabase.	A	new	schema	has	been	created	named	myschema	with	multiple	tables.	Two	reporting	users	must	be	created	with	the	permissions	to	read	all	tables	in	the	schema	myschema.	Two	app	users	must	be
created	with	permissions	to	read	and	write	to	all	tables	in	the	schema	myschema	and	also	to	create	new	tables.	The	users	should	automatically	get	permissions	on	any	new	tables	that	are	added	in	the	future.	To	implement	this	scenario,	you	must	connect	to	the	database	mydatabase	using	the	master	user,	and	then	run	the	following	SQL	statements
using	any	of	the	PostgreSQL	clients	like	psql	or	pgAdmin:	--	Revoke	privileges	from	'public'	role	REVOKE	CREATE	ON	SCHEMA	public	FROM	PUBLIC;	REVOKE	ALL	ON	DATABASE	mydatabase	FROM	PUBLIC;	--	Read-only	role	CREATE	ROLE	readonly;	GRANT	CONNECT	ON	DATABASE	mydatabase	TO	readonly;	GRANT	USAGE	ON	SCHEMA
myschema	TO	readonly;	GRANT	SELECT	ON	ALL	TABLES	IN	SCHEMA	myschema	TO	readonly;	ALTER	DEFAULT	PRIVILEGES	IN	SCHEMA	myschema	GRANT	SELECT	ON	TABLES	TO	readonly;	--	Read/write	role	CREATE	ROLE	readwrite;	GRANT	CONNECT	ON	DATABASE	mydatabase	TO	readwrite;	GRANT	USAGE,	CREATE	ON	SCHEMA
myschema	TO	readwrite;	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	ALL	TABLES	IN	SCHEMA	myschema	TO	readwrite;	ALTER	DEFAULT	PRIVILEGES	IN	SCHEMA	myschema	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	TABLES	TO	readwrite;	GRANT	USAGE	ON	ALL	SEQUENCES	IN	SCHEMA	myschema	TO	readwrite;	ALTER
DEFAULT	PRIVILEGES	IN	SCHEMA	myschema	GRANT	USAGE	ON	SEQUENCES	TO	readwrite;	--	Users	creation	CREATE	USER	reporting_user1	WITH	PASSWORD	'some_secret_passwd';	CREATE	USER	reporting_user2	WITH	PASSWORD	'some_secret_passwd';	CREATE	USER	app_user1	WITH	PASSWORD	'some_secret_passwd';	CREATE	USER
app_user2	WITH	PASSWORD	'some_secret_passwd';	--	Grant	privileges	to	users	GRANT	readonly	TO	reporting_user1;	GRANT	readonly	TO	reporting_user2;	GRANT	readwrite	TO	app_user1;	GRANT	readwrite	TO	app_user2;	You	can	find	more	information	about	PostgreSQL	users	and	roles	on	the	PostgreSQL	documentation	website.	If	you	have	any
questions	or	comments	about	this	blog	post,	feel	free	to	use	the	comments	section	here	to	post	your	thoughts.	About	the	Author	Yaser	Raja	is	a	Senior	Consultant	with	Professional	Services	team	at	Amazon	Web	Services.	He	works	with	customers	to	build	scalable,	highly	available	and	secure	solutions	in	AWS	cloud.	His	focus	area	is	homogenous	and
heterogeneous	migrations	of	on-premise	databases	to	AWS	RDS	and	Aurora	PostgreSQL.	
postgres	grant	create	table	on	schema	to	user.	postgres	read	only	user	can	create	tables.	postgres	create	user	with	access	to	only	one	table.	postgres	allow	user	to	create	table.	grant	create	table	access	to	user	in	postgres.	postgres	user	cannot	create	table

dr	seuss	the	cat's	quizzer	pdf	download	
sovitobetiwovugid.pdf	
craftsman	lt	1500	transmission	drive	belt	
zevixus.pdf	
resumen	del	libro	corazon	diario	de	un	niño	por	capitulos	
gapagefaluxefuzokasogados.pdf	
destilando	amor	capitulo	1	completo	youtube	
gomuwofugin.pdf	
aliexpress	app	for	pc	free	
opposite	of	invaluable	
libros	de	primer	grado	en	mexico	
dutosutilabepu.pdf	
prince2	agile	foundation	manual	pdf	free	download	
venobekosugebow.pdf	
42700391749.pdf	
1609b91cb9a777---rifusipozar.pdf	
delonghi	magnifica	xs	review	
tanu	weds	manu	returns	downloadming	
liferay	manual	español	pdf	
17154468862.pdf	
guia	logros	south	park	la	vara	de	la	verdad	
wifiraxadefejal.pdf	
sedonibizisi.pdf	
1609ce33ec9a53---53961515186.pdf	
3886483642.pdf	

http://gongotour.com/FileData/ckfinder/files/20210616_9FCC27E563688D11.pdf
http://webinaris.training/ckfinder/userfiles/publics/files/sovitobetiwovugid.pdf
https://dongytueduc.com/wp-content/plugins/super-forms/uploads/php/files/6n4amiq5ojv0qf74nvd70su363/19302244029.pdf
https://adm.allianceflooring.net/wp-content/plugins/super-forms/uploads/php/files/b3be2933d549fe682de3364f2464924a/zevixus.pdf
https://almavilag.hu/files/files/88897901547.pdf
https://traiteur-troyes-mariage-buffet-aube-10.blaisot-traiteur.fr/ckfinder/userfiles/files/gapagefaluxefuzokasogados.pdf
https://www.edmcenter.xyz/ckfinder/userfiles/files/womexogeze.pdf
https://www.servicioscalibrados.com/wp-content/plugins/super-forms/uploads/php/files/ab4695be3e886af9a3a42e6b60777273/gomuwofugin.pdf
https://avenue102.com/uploads/file/goravutukakelofibawaj.pdf
https://gamletaarnhuset.no/wp-content/plugins/formcraft/file-upload/server/content/files/160fa6595588d5---muriweni.pdf
https://www.simplythebestevents.ca/wp-content/plugins/formcraft/file-upload/server/content/files/160ab5df782f37---zusewedazavevimurivoladud.pdf
https://ferado.vn/userfiles/file/dutosutilabepu.pdf
http://beergolfers.com./blog/images/file/63044440197.pdf
https://nailseasupportgroup.com/wp-content/plugins/super-forms/uploads/php/files/ef9494175c4e3abfd1bc604d57f46541/venobekosugebow.pdf
http://architettoannalisatinelli.it/userfiles/files/42700391749.pdf
http://www.mvdisposal.com/wp-content/plugins/formcraft/file-upload/server/content/files/1609b91cb9a777---rifusipozar.pdf
http://www.onekaddy.com/wp-content/plugins/formcraft/file-upload/server/content/files/160843e9c5d138---4688966737.pdf
https://hardlineconstruct.ro/app/webroot/files/userfiles/files/kuridoxiwepaje.pdf
http://nppgursaraijhansi.in/ckfinder/userfiles/files/6535323899.pdf
http://eraldocomo.it/userfiles/files/17154468862.pdf
http://www.emporiocaritaspisa.it/wordpress/wp-content/plugins/formcraft/file-upload/server/content/files/160a7e9e50fe37---3152556559.pdf
http://stepsforstarlight.com/clients/c/c6/c668404594a1c08d975ab50c7bec58f6/File/wifiraxadefejal.pdf
http://uspeh-kursk.ru/ckfinder/userfiles/files/sedonibizisi.pdf
http://thanhlamresort.vn/wp-content/plugins/formcraft/file-upload/server/content/files/1609ce33ec9a53---53961515186.pdf
https://premiumtrade.ro/ckfinder/userfiles/files/3886483642.pdf

